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Définition :

Une portion de poutre est sollicitée en flexion simple suivant I’axe Z si pour chacune des sections
droites, le torseur de cohésion se réduit, dans le repére R = (G, X, y, Z) de définition des sollicitations :

0 0
fToon |={E2>E = {NFf }: Ty 0
c VA8 . 0 Mfz 6592

Remarque : si Ty est nul, alors la sollicitation est appelée flexion pure

Relation entre I’effort tranchant et le moment fléchissant

dMfz
ax VY

Etude des contraintes normales

La poutre étant sollicitée en flexion simple, la ligne caractéristique peut étre assimilée a un arc de cercle
de rayon R appelé rayon de courbure

~ dx X
S Y s

Au cours de la déformation, le trongon considéré initialement prismatique se transforme en portion de
tore de rayon moyen R intercepté d’un angle da

Section droite Avant sollicitation Pendant sollicitation

do

MM’ est une fibre du trongon joignant deux points homologues des sections X et X'
Les fibres situées dans le plan (G,X,Z) ne varient pas et sont appelées fibres neutres

Les fibres au dessus de G (Y > 0) se raccourcissent et celles en dessous de G (Y < 0) s’allongent




B.T.S. RDM

CRS.A. .
FLEXION SIMPLE Fiche 2

Allongement / Raccourcissement relatif de la fibre M’M

- coordonnées du point M (Y, Zu) dans le repere local R = (G, X, Y, 2)
- longueur initiale M’M = dx

allongement relatif : dx

Expression de la contrainte normale

En exprimant la loi de Hooke définie par la relation o=&.E, on obtient :

v by

zone
comprimée
1
la~]
o
£
;rﬂﬁ
/\
Q g g
N

oM =—E.YMd—a

dx

zone
tendue

- la contrainte normale est nulle sur la fibre neutre
- lesigne s’inverse a la traversée du plan (G,X,2)

- larépartition est linéaire sur la section droite
- le point le la section le plus sollicité est celui qui est le plus éloigné de la fibre neutre

Relation entre contrainte normale et moment fléchissant

Une coupure est effectuée au niveau de la section
droite X

Soit un pont M de coordonnées (Xwm,Ywm,Zw)et dX un
élément de surface entourant M

L’action mécanique de cohésion s’écrit :

om.dX 0 om.dX 0
{S+>S-= 4 0 0 =4 0 0
wl 0 0)gin ol O Yowds]

Le moment fléchissant Mfz est la somme des moments en G des actions mecaniques eélementaires
transmises par les éléments de surface dX constituant le section droite avec dMfz=—Y.owm.dZ

Mfz.Ym
jYZ.dz

z

— :zd_O!:d_Olzz_Qz -
Mfz= iY.aM.dZ !Y ELL.dz E.dxlv dz=—7 lv .d2 donc oM
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Moment quadratigue

Lasomme [Y2.dE (mm*) est le moment quadratique de la section droite

3 lez =IY2.dZ
> par rapport a I’axe Gz que I’on notera lez . Le moment quadratique z
dépend uniquement de la geométrie de la section droite

VALEURS DE MOMENTS QUADRATIQUES PARTICULIERS

SECTIONS PRESENTANT UNE SYMETRIE CENTRALE

Sections YA y YA y y
(S) ol |} [Y ol<l] 4
- © <t
z | |G S|z G[™y | Z[lIGITS | Z z
Caractéristiques L. - b . d d D
Toy bt & e s Z(0'-d% | 078400’
P o 3 0,3
O e bh® at bh”-b'h zd* z_(p*-d%) 0,784335
e 12 12 12 64 64
d LR ; | 2 2 4 R
il ”g(" +h') "’? lgy+ 16 % ;‘—2(04-41‘) %ab(a%bz)
Module de flexioa * 2 a3 bh’- pw 3 . 8
gy bt e — =l L_(D"-d") | 0,784ab°
Yy . 6 3 6b 16 16 D
Module de flexios * 2 3 3_ pupsd 3
.. bh~ a- h_h___b_h_ nd” L(D‘-d‘) 0,784 ba?
Par 6 3 6h 16 16D

Théoréme de Huygens

Le moment quadratique d’une section par rapport a un axe contenu dans son plan est égal au moment
quadratique de cette section par rapport a un axe paralléle au premier et passant par son barycentre,
augmenté du produit de I’aire de la section par le carré de la distance entre les deux axes.

loy=ley+S.d? Ay Ay

loy : moment quadratique de (S) par rapport a (O, y ) (mm?) -%&§)
ley : moment quadratique de (S) par rapport & (G, V) (mm*) T G\
S : aire de la section (S) (mm2) d

Barycentre de (S)

d : distance entre les axes (O, y )et (G, y ) (mm)
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Exemple : calculer le moment quadratique de I’equerre / GX : lox

Décomposer (S) en deux rectangles (1) AKEF et (2) BCDK

| _100.10°
1G1x 12 ’
3 5
o, = 1o, +S.d2=10010" | 100.10).107 = %uos
| _1050°
2G2x 12
3 4
Lo = lhga +5,d2= 1050 +(50.10).202 = 125.10 +20.10*
loy = g, + 1o, = 41,2.10°mm*
7 . .
. y y
c v °TTE 0,=20
V) 2=
. 10 .
11 6 L3 K
o » | [ =
8 - i :9 e ;/» ) d1 10
Gy J G T v) r
D E K DY ’?‘?‘"E
y p Gy T Y
A ! Fl A= ' '
100 X Aire de KBCD Aire de AKEF
) ™ S,=50% 10 $,=100 X 10

Module de flexion

On appelle module de flexion la quantité Jsz an mm®. Crest une caractéristique courante des profilés.

max

Contrainte normale maximale

omax = contrainte normale maximale (Mpa)

\}i = module de flexion (mm?) Omax= I\I/le
ax _ GZ
Mfz = moment de flexion sur Z (N.mm) Yinax

Condition de résistance a la contrainte normale

Rpe : contrainte pratique de limite élastique (Mpa) = %

Re : contrainte de limite élastique (Mpa)
s : coefficient de sécurité Kt. omax<Rpe
omax = contrainte normale maximale (Mpa)

kt : coefficient de concentration de contrainte
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Déformations
Soit une poutre AB sollicitee en flexion simple et (A,X,y,Z)un repere . M 1
d’étude global qui ne se déplace pas lorsque la poutre se déforme. y (X): El
. L . . o Jdcz
€ est la ligne caractéristique de la poutre déformée considérée comme la
graphe de la fonction y=f(x)
I’équation de la déformée s’obtient par intégration successive de y’’
Exemple v y }
F.x ? ] Foo
— z R1 A S¢ ¢ * B
y..(x)_ fz 2 _ F.x S B Ii ! i——
- = = > ;
E.l,, El, 2E.l, H | »”
|l
2.El,,.y"'=FxX
premiere intégration
2
2El,.y'= F.X?+cl
4E.l,,.y'=Fx2+C,
recherche de C; : y’=0 pour x = I/2 (symétrie de la déformée)
2 2
0= F.|—+C1 =C, :—i
4 4
2
4E.lg.y'= Fxe_ 1
4
deuxieéme intégration :
3 2 3 2 3 _ 2
AEN,.y = F.X——i.x+C2 _ Fx* Fl2x +C, = 4.F.x° -3.F.lI2x +C,
3 4 3 4 12

recherche de C, : y=0 pour x = 0 (appui ponctuel d’axe y)

_4FX®-3F.l2x

y est maxi pour x = /2 (symétrie de la déformée)
48.E.1,

| | 41° 3I° 1 38 21°
4F.~ —3Fl2— F(-2) F(—-29) —F(—
8 2 _ (8 2)_ (2 2)_ (2)

48.E.l, 48E.l,  48E.l, 48E.lg,

y:

FI°

Y= 48E1,
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Formulaire des poutres

POUTRES SUR UN APPUI

£i 5§ 2
A YA
y “ Ty /{fGZ yA
A X A ‘B X A ,_ B
z/ 2 B E x A B~ '\‘\‘\J\] ] S
avec F <0 avec F <0 Flacheen A:
B=—F=||FIl.y . Moment de flexion F<0
(avec F< 0) Ty=+|Fl HFH/-"
wg=-Fll.r.Z constant entre Aet B enB:#fgz=~|IFll./ A” " 3E.1g;
m Concentréeen C
y
,A / T, Moz # VA
AC A X AL B x ACy B _
z . BV x "C B~ ' o X
YF [ . /l/;
- a b A
>
3 = —; Entre AetC: 7, =0 Moment de flexion Flécheen A:
avec F <0 Entre Cet B: avec F < 0 enB:avecF < 0
B= |IFll.y . . , IF11(/-a)2(27 +a)
— -> > - - A =-
IB=-||FI|.b.Z Ty-HF“ "”GZ- ||F||'b GE.Iﬁz
m Uniformément répartie
‘ #is, yA
y Ya
5 B «x A B _
1 > A XV
Yevvyyy A B N
-p.y
p - coefficient de charge (N / m) Effort tranchant Moment de flexion Flécheen A:
§=p,/_} maxen B: enB:
— % » .02 , p.o
=-2" . T, =p./ Gz=-— A=~
Ho=-— —? ymax = P ‘ 2 TR
m Linéairement répartie
A, YA
y A x Ty oz Ya
z — lA ' B lAN] o X
—P.Y y
avecp = k. x
> K/ 2, Effort tranchant Moment de flexion Flécheen A:
B= 2—" maxen B: enB:
— 3 , 2 3 5
k. / > - k. / __ k7
HB=- .z Ty max = Mg, =-K"0 =-_%7
M ! 62 6 30F.1¢;
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POUTRES SUR DEUX APPUIS AUX EXTREMITES

-Appuls _ Cfottanchent . | Momentdefexios |
= Concentrée en C A y
T, V4{ Yc
y a b y Gz T A2
8| ol o[ [[1), Oiédjjj:bi., ol A L,
A ,::"C X l l ) ; a 3% y X
¢ mpourx=a _, m pourx=3 R 2
e o 5 igye IFIl.2:0 __lIFll.a.0
’A=”F”"’.7;m =0 pedac:Ty=-FIL p o / . 3E.lgz./
/ s msia="_ msia="—
G Fl.a 5. = & I 2 R, 2 _IF.®
B = .y 48 =0 DeCaB:Ty=+ .a #rgy="00-0 yo =-171- 2
¢ ¢ 4 48E.1G;
M,
Gz y Z_C_
OLT T[T, , //2c v/
I 7 t L O T /? o
/2 ’ X y i X
p. .
J"___’;P-/’ _;;/,,—" =a Ty=+px-p./12 Mfg, maxpourx=//2 Flecheen C: x; =!é_
. _Z> . . enA:T, =-p.//2 ) .
\M =#g =0;#8 =0 enB:T, = p.//2 MGz max =Pt yo =- 2P/
' 3845.’61
m Concentréeen C
T
YA /2 /12 YT y Yc
A C‘ =2 B X 2 2
F 0] /2 14 /
- > o %—-«—»
7-8lFI LT x :‘ﬁdr X
16 N
F=NIFIL ¥ DeAaL‘:Ty=-5H1:” M1g, estmaxpour x= / /2 Fléche en C:
16
. - ] N — — ) —> )3
\ a=—3“F”" 2 DecaB:Ty="”F“ Maz=5“F”'/ yC=_7IIF|I-/
16 16 32 768 E.lg,
m Uniformément répartie T
y 4 B yT y Yc
-> > _‘)-_y> X X
2 .3p7 .y [}
a 2
g =3P 3 T, = px-3p.//8 #1 g, est max pour x=-C- Flacheen C: x=
P _ 8 2
enA:T,=-3p.//8
2 f 9. /° 4
p-¢ enB:T, = 5p.//8 #1Gz/max = —— yo =-P-/
128 . 192E.lg;
" A
T
g Yo
o] 412 o o /12 [/
x L X
I4 A
R - # 1g zest maximal pour x= /' /2 Fiéche en C':
A-5-1F1 DeAac:Ty=-1FIl
2 2
—_ —_— > — =z 7 2 P4 )3
an=-mpg=lFll.s 7 Do CaB:Ty= + 1 F wige=LFIl. ¢ yo=-lFll./
8 2 192E.1g;
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& Uniformément répartie y Yo
J - ) Yc
y; A —-p.y BY _ 4 B o 2y Lo
2 YVYYY X Vo x 4 i X
- A -
[4=3=p—2—L I7 At g yest max pour : x=£ Flécheen C: x; = /;
2
— — , 2 N 2 4
\ A=-/‘/n=p’/ 4 l/fg;:p'/ YL‘='———p'/
12 24 384 F.Ig:
’ POUTRE SUR DEUX APPUIS AVEC PORTE-A-FAUX SYMETRIQUE
hatges-Appuls . | . _Ettorfwanchant |  Momestdefilexion | Déformation
m Deux charges concentrées yh Yc E Ye
Mg, e
/+a /+2a cl A B D y !
X | = Fiecheen E: xg = %"—
rs 2
Ve= H:!-a. /
ﬁ F HFII y Entre Cet A: Entre Bet D : # g, entre AetB: mEncC: |* : ’f’
A-8=lFI z 7 - - UFl.2
MAa=Hg =0 Ty=1l| Fl| Ty=-I| F | #tgz=-||Fll . a Ye = m(3/+2a)
Ty /”sz y
a /+2a c| A B D Cl_A B !D
x o) x E x i X
mAfg enE: x=!+22 E Ye]
Entre CetA: T, = px . / +2a
i - > Yy . = - "
{A =B=g(/'+23)_y /‘{fﬁ'l:g(/2_4az) m Flécheen E :E 2
. / +2a) 2 p./ 5 2
- L, DeAaB: Ty=px-PU *2) | LA " e, - P-3% | ype-_P-/ 5 _ a2
Ma=Hg=0 2 62 2 6E. Ig,\28 ;2

POUTRES SUR DEUX APPUIS AVEC PORTE-A-FAUX UNILATERAL
ss-Appuis | ‘Effort tranchant ‘Moment de fiexion = L ' Déltormation

] [ | Chargé conc’enlréeken C
T, 4 / e yh JE Yc
yhA B_C_ TOgs., X A B C 8§ C
,At / . X o /+a X A E —F‘ X
a m Flecheen E:x = / V3/3
- —> N s > — ’2
fh_ufn.a_y;/,“o i yoo IFlla/? V3
/ Entre AetB: Ty= y . Mie enB 27 E. lg;z
> = — > Gz : F 2 '
\\B=||F||(/’+a).y,/f3=0 - - -en[.‘:y[;=—|—-—~“:“'a (a+/)
/ Entre BetC: Ty=-|| Fl| #fgz=—-||Fll.a 3FE.lgz
2 2
Xg = /“-a
Ty /”sz 2 y
/+a A B C A B_C
o) / X E X ! — X
De A2 B: » #fg, Max pour x = Xg
Ty=px- P (,%2-22) ﬂfez=L2(/'2-az)
"
De Ba C: 8¢ ). a2
Ty=-p (/+a)+px mEnB: #igz=-
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POUTRES SUPPORTANT UN COUPLE

T A

y 6; y Mg, C<0;a+0 | FlacheenD:
A D B X ’ x yp=_1_. C.a.b (b-a)
X 0] ’ 0] E.lg: 3/
z T.a_|. b "7 <0 ( )
Yz a=—__€  (r2-3p2
- > 0<x<a T}':_L, 0<x<a ’”’GI=_£/,1 ¢ 6E.l1gz.¢
C,=C;C<0 /
. N , /- 2
{A=£y. B=—£y a<x< / Ty=—£ a<x</ //Ic'-z=u =‘#-(/ ‘332)
/ / ¢ / 6E.1gz./
- <0
[ C<0;a+0 0<x<a
y<a> z T, A
A Bl Y c -a)
> X -ajx
z O / 4E.l81-/
—> —> > 2 :
A=—B=3_(/‘z-az)_y 0<x<a T, =-A [/ Ba-/ )‘("*3)‘\'2}
2/3
\/f, =€ /2.3a2)| .7 a<x</ Ty=-A |#tgrms € [2/%3(/%a2)x]| pa=-— € (/-a)/ -3a)
2/ 2/ 4E.1G2.¢
73 TyT M, A cae
- fp=_—~>42-_
AX D Byx | X X 2E.16z
®p O / O a /
g )A rgp=FCa (/-2
C, B
E.lﬁz 2
<0 c<0
Ra=0 x<a T,=0 x<a ;Mlg, =-C o0=-2L2_ -gp
Ha=-C.z x>a T,=0 x>a ; Mg, = 0 E-le:
POUTRES SUR TROIS APPUIS DE NIVEAU
M,
X | Flache pour xz = 0,42 ¢
O E 2/

4
> - 0<x< v p./
> fE=— 0,043
Ii=ﬂ=0,375ﬂ-/-y T, = px-0375p./ 0<x</ ; Mlg,=0,07p.s2 E.lg:
C=1250p./.y S < x<2/ Mlgz =-0,125p./ 2
\‘;”7;:/75:0 T,=px-1625p./ F<X<2/ ;Mlg=0,0Tp./2
y -~ -~ M,
F F Gz ,\/—
Al y Cy B_ pour xg = £ V5
A TAS T x °
/12ler2lm2lir2
—y /1A
-~ 0<x<//2 T,=- 5F16 3
> > > SF. / = F./
=B=-5F /2<x<s T,= 11FM6| X=7% i#flez= e
‘A g T 2<x<c Ty / 2 32 240 E.l g,
- 5 ¢ <x<3//2 T, ==11F/16 3F.
c=1NF , x=4 Mlgz=-2T
8 3/ 12<x<2/ Ty=- 5F/16 16
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Contrainte tangentielle

Ty est I’effort tranchant (N)
S est la surface de la coupure ¥ (mm?)
vmoy €St la contrainte tangentielle (Mpa)

T

TYmoy Z?y

Contrainte tangentielle maximale

Section rectangulaire
3
Tmax=-x"7Tmo
2 y

Section circulaire

4
Tmax=x"Tmo
3 y
Autres sections
Si I’épaisseur est petite devant les autres dimensions
3 Tmoy tranversales, on peut considérer que seule la section
tmax=5"g, Sa (partie grisée) travaille au cisaillement

Y Y

Y Y
z ‘ Z z :
G G G

Condition de résistance a la contrainte tangentielle

Rpg @ contrainte pratique de limite au glissement (Mpa) = %

Rq : contrainte de limite élastique au glissement (Mpa) <R
s : coefficient de sécurité TYmaxSRpg
max = contrainte tangentielle maximale (Mpa)

La contrainte limite au glissement Ry s’exprime en fonction de la contrainte limite & I’extension Re
- matériaux ductiles: Rg =0.5 Re

- matériaux peu ductiles: Ry =0.6 Re ou Ry = 0.7 Re

- matériaux a décohésion franche : Ry =0.9 Re
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Exemple
F=21N
| =600 mm
S+ B b= 20 mm
X
h=4mm
A Matiere : A60
) 2 E =200 000 Mpa
Re = 340 Mpa
Rg =06 Re
s=2
Etude statigue
On déduit Yiss = Yous = 555 =10,5N donc A-s=10.5.y et B2»s=10.5.y
Torseur de cohésion pour OSXSI§
0 O 0 0
{Teon}={S-—S-}=— {0.5F 0 ={-05F 0 = {105 0
A 0 O gD G 0 0,5xF G358 0 10.5x 6£7.2)
Torseur de cohésion pour Iiéxél
0 O 0 0 0
{Teon}={S-—S.}= {0.5F 0 =J05F 0 = 0
5 0 O Ex3D G 0 0,5F(-x) GiyD G 0 -10.5x+6300 6552

Diagrammes
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Contrainte normale maximale
M h
M M.Y 2 o
Gy = = o 2 3150'32 = 59,0625MPa
I& I, b.h 20.4
Ymax 12 12

Condition de résistance

omax<Rpe—>0max< I?Se >59§3L210 »69<170 |3 condition est vérifiée avec un rapport Znx=0.17

Contrainte tangentielle maximale

_3_ _305F_3105_
Tmax—szoy—z. bh —2204—019MPa

Condition de résistance

rvmaxéRpg—mmaXSO.G%—)O.l%O.G?’izO—)O.193102 la condition est vérifiée avec un rapport %=0.00059

Conclusion
La poutre soumise a la flexion simple est plus sensible aux contraintes normales qu’aux contraintes
tangentielles.

Le calcul de résistance d’une poutre sollicitée en flexion simple se fait selon le critére de la
contrainte normale

Calcul de la fleche maximale
| P 21.600°
f()= -

- 3
48Elg 48.200000. 2(1)24

=4.42mm

Calcul de la fleche sans I’aide du formulaire

M
y'(X) = —= 310 _ 000148
E.l 20.4°
ez 900000, 52
12

y(x)=0,000148.x+C: y’(x)=0 pour x=1/2=300mm  C:=-0,000148.300=—0,044297
y(x)=0,000148.x-0,044297

y(X)=0,000148.)(72—0,044297.X+C2 y(x)=0 pour x=0 donc C, =0
y(x)=0,000148.X72—0,044297.x=0,000074.x2—0,044297.x

La fleche sera maxi au point C : -6,64
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Principe de superposition

Dans la limite des déformations élastiques, le vecteur déformation en un point, du a un systeme de
forces extérieures est égal a la somme géomeétrique des vecteurs déformation dus a chacune des forces

du systeme agissant separément.

cl

|

A /N D A\

Exemple

AN

D /\

On considére un IPE 180 reposant sur deux appuis linéaires

rectilignes parfaitsen A et B

Cette poutre, dont on ne négligera pas le poids supporte en C

une charge verticale concentrée Cs-1=—1200.y

Hypothéses :

- poids linéique : p = 188 N/m

- moment quadratique lgz = 1 317 cm*

- module de Young : E = 2.10° Mpa
- longueur I =3m

Calculer la fleche en I, milieu de la poutre

Considérons dans un premier temps la poutre soumise a la

charge répartie p uniqguement

5.pl* 5.0,188.3000*

Y1(|):

384.E.l,, 384.200000.1317.

10*

=0.075mm

Considérons dans un deuxieme temps la poutre soumise a la

charge concentrée uniquement

SE 1200.3000°

=0.256mm

I: =
Y2(1) 48E.l,, 482.10°1317.10°

Utilisons le principe de superposition : y=y; +y, = 0,075 + 0,256 = 0,331mm

+
c
LNWAN D A\
V
3 T
A 15
"@f\\\\ 12 N
'6'(4_.1)
I
p (a)
;X’ @-1) | e
C (f B _x
AT b e
12 ’
'5(4_.1)
]
)
y
xil(zan ) *E',(M)
X
G C B x
A
, p
y
A,(2-1) “820—'1)
G ¢ B _x
A X
1”2
| =Y
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Flexion de poutres hyperstatiques

Les seules équations de la statique ne suffisant pas pour résoudre le calcul des actions aux appuis. Il

faut faire intervenir en plus les équations de deformations .

y
Exemple 1

Une poutre AB en HEA 600 (Igz = 4786 cm®; E = Y
2.10° MPa) de longueur | = 4m encastrée a ses deux /1

extrémités supporte en C une charge I_f:—5000.37 2N

112

Déterminer les actions en A et B

Equations de statique :
Ass=Boss=F/2 (symétrie)

M a1s —F|+ Meg2-s+Bo-s.1=0 :

2

M asss—ELi M s +El=0 N
2 2 M a1-s 6

donc Maiss=Maeiss h

le systéme est hyperstatique d’ordre 1

Equation de déformation :
Calcul du moment fléchissant quand OSXS%

0 0 0 0
fTeon J=—{Text>s - J=— {AHS 0 }_ {AHS 0 }

0 Mass—Ass.X 0 —Mass+A-s.X

Utilisation de I’expression de la déformée
E.lez.y"=A->s.Xx—Ma1-s

E. |GZ.y'=AL—>S.X72—M A>s.X+C1

X3
E. |GZ.y:AL—>S.€—M Al—)S.X?2+CLX+C2

y(0)=0=C1=0

X3
y(0)=0=C.=0donc E. |GZ.y=A»S.€—M AHS.X?Z

Compte tenu de la symétrie de la déformee : y‘('i):o donc

(|§)2 Aos

M z=A-5.X—M a1ss

)z
O=A€l—>3.—_M AleS.L:M(%)Z—M Al—)S.I—::MAl—>S= 2 2 =A§l~)3.|

2 2 2 2 | 4

2

AL—>S—2 donc M a15s=MB2-ss 5
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Effort tranchant \ F
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~) [ED X
|§£xsl : Ty:%=2500N 6‘
A c B
Moment fléchissant o
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: . 8 . ]
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Fléche maximale au point C c B
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